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1. Introduction 

Warfighters face uncertainty in the performance of each and every task they 
undertake during mission execution. The military decision-making process seeks 
to reduce these uncertainties through planning by creating contingencies whenever 
possible. Information can reduce uncertainty; however, this reduction can only 
happen if the information is understood in context, that is, if the warfighters can 
evaluate the gained information in light of their plans and contingencies to assess 
mission-related risks. Information context is extremely important to the warfighter, 
and that context is a 4-dimensional (4D)—x, y, x, t—cube. Numerical Weather 
Prediction (NWP) forecasts produce 4D meteorological information yet the means 
to interpret the data cube in warfighter-relevant terms is not easily available. NWP 
forecasts have improved greatly since NWP’s inception in 1950 but remain 
imperfect. It is not currently possible to anticipate ahead of time the meteorological 
errors of a particular forecast. 

The risk in using a meteorological forecast of any kind is that it will inaccurately 
predict the future state of the atmosphere to an unknown extent. There are 3 reasons 
for forecast inaccuracy: 

1) The forecast model’s initial conditions contain error due to an observation 
system that cannot adequately sample the complexity of atmospheric 
conditions at the start time of a forecast. In addition, the observations on 
which the initial conditions are based contain some amount of error that may 
be unavoidable. 

2) Although the forecast model is based on continuous partial differential 
equations, the actual forecast process is carried out with discrete or truncated 
numerical approximations of these partial differential equations. These 
approximations induce error due to their discretization and present a 
minimum scale at which physical features (e.g., complex terrain) and 
atmospheric processes can be adequately represented in an NWP forecast. 

3) As a consequence of 2) above, the forecast models have to parameterize 
atmospheric physical processes (e.g., radiative transfer, precipitation and 
evaporation, surface heating, turbulence, and so on) that cannot be explicitly 
represented in order to account for their effect on the evolution of the 
atmosphere. These parameterizations can be extremely complex; nonetheless, 
they imperfectly represent the actual physics. 

Despite the above limitations of NWP, some forecasts are quite accurate and the 
use of them in the planning and execution of operations would be highly beneficial. 
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However, other forecasts are less accurate and the use of them in planning and 
execution could adversely impact the operations to the point of causing failure 
and/or unnecessary loss of equipment and lives. The salient question is this: Can 
the quality of the currently available forecast be known without waiting for 
confirming observations? 

In this report we seek to assess 2 potential methods to ascertain the quality of an 
NWP forecast: ensemble modeling and use of a qualitative “confidence index” (CI). 
The development and test of one or both of these methods for possible operational 
use will require significant resources and is not a short-term effort—but, if 
successful it could lead to a major improvement in weather support for planning 
and mission execution. 

2. Overview of Assessment Methods 

There are currently 2 ways to assess the quality of a current forecast:   

1) Ensemble modeling, and 

2) Qualitatively, based on forecasting experience and the accuracy of the most 
recent forecasts; this empirically based method has been quantified into 
calculation of a CI. 

Ensemble modeling involves starting the same forecast model with slightly 
different initial conditions, or starting a variety of models with essentially the same 
initial conditions and evaluating the evolution of the different forecasts. This can 
be a measure of the forecast uncertainty if the breadth of the initial conditions or 
variety of models used captures the true atmospheric evolution during the forecast 
period. The ensemble forecast(s) can also be used to produce an improved forecast. 

Ensemble modeling also can be accomplished through the use of different physical 
parameterizations in a forecast model with the same or varied initial conditions. As 
with the different initial conditions, the set of different physical parameterizations 
as a whole must capture the actual physics. Ideally, the ensembles would include 
both variation in initial conditions and physical parameterizations; however, the 
number of ensemble members might then be unfeasibly large. Ensemble modeling 
experience has shown that variation in initial conditions is more important than 
variation of physical parameterizations to forecast quality.1 

With initial conditions being the more important reason for forecast uncertainty, 
there appears to be a viable alternative to ensemble modeling. This is based on 
many forecasters’ experience with a large set of initial conditions, forecasts, and 
the subsequent weather that occurred. The CI is a rules-based assessment 
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concerning the initial condition that are associated with better or poorer forecast 
outcomes2 show that a “trained” rule set can explain a majority of the variance in 
subsequent atmospheric evolution based on application of the trained rules set to 
initial conditions. The CI requires a great deal of preliminary training but, once 
trained, can be quickly applied to any appropriate set of current conditions resulting 
in a numerical value indicating the confidence that a forecast based on those 
conditions will be good or not. It may also be able to provide quantitative 
expectations about the forecast meteorological (MET) parameter accuracy such as 
the mean absolute errors of temperature, pressure, and wind that are important to 
artillery accuracy. 

3. Assessment of Spatial and Temporal Uncertainties in 
Ensemble Forecasts 

One can view the forecast produced by an NWP as a single-sample estimate of the 
future atmospheric state described over a 4D region of space. Ensemble prediction 
methods, in one form or another, generate a “large” sample of the future state of 
the atmosphere; thus, they provide a means to estimate both the atmospheric state, 
as described by conditions at a given point in space, as well as the uncertainties, 
expressed as the range of possible states. For example, possible conditions could 
include extreme winds or heavy rains. By themselves, some possible states have 
informational value (i.e., one cannot fly certain unmanned aerial vehicles in high-
wind conditions) but the more-desired information for a warfighter would answer 
the question, “How likely is that condition to occur over a given region of the 
battlespace?” 

To help address this question, we can employ a Geographic Information System 
(GIS) in conjunction with high-resolution, Army-scale NWP codes executed over 
tactical-sized domains. A GIS provides a single framework within which we can 
easily incorporate available data products such as digital elevation models and land-
use characteristics as well as the ensemble forecasts for analysis.3 Within the GIS, 
we can estimate uncertainties from the ensemble forecasts produced via NWP, for 
example, over complex terrain where weather phenomena are particularly 
influenced by terrain geometry and the variance of heat momentum and moisture 
fluxes resulting from the terrain characteristics. 

The objectives of the analysis will be to 1) quantify and assess the accuracy the 
spatial and temporal uncertainties present in ensemble forecasts, and 2) develop 
methods to depict MET uncertainty in ways that enable warfighters to quickly 
assess operational risks and exploit favorable weather conditions.   
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3.1 Technical  Approach 

There are 3 forms of uncertainty that come with the use of NWP to produce 
forecasts: 1) the input uncertainty that derives from an incomplete observation of 
the current atmospheric state, 2) the model uncertainty that is a consequence of an 
incomplete understanding or description of the atmospheric physics, and 3) the 
forecast uncertainty; that is, the likelihood that a single prediction is correct. In 
order to properly understand the forecast uncertainty, we must understand how 
input and model uncertainties influence it. 

1) Develop uncertainty measures: 
a. Characterize input uncertainty by subsampling initialization data to 

determine sensitivity to observation density, region, and synoptic 
conditions. 

b. Characterize model uncertainty by evaluating the range of possible 
parameterizations. 

c. Characterize forecast uncertainty by binning the output space and 
estimating bin probability. 

2) Define the experiment:  Employ statistical design of experiments using a 
range of regions, synoptic conditions, parameterization schemes, and input 
densities to generate a range of ensemble forecasts generated under very 
controlled conditions. This step will allow us to understand how input and 
model uncertainties drive output or forecast uncertainties as well as 
determining a NWP configuration with broad applicability. 

3) Evaluate the experimental results:   
a. Evaluate the ensemble forecast by comparing the spread with that of 

weather observations, by determining the accuracy of the probabilistic 
forecasts, and by verifying the accuracy of the mean prediction using 
traditional and location-based GIS approaches. 

b. Extract the probability distribution function (PDF) of the frequency 
distribution of the variables of interest. 

c. Use the PDF to interpret the forecast in terms of the probability of an 
event or the expected spread or variance of variables produced by the 
NWP forecast occurring at a particular point and time. 

d. Combine the probability of the event with the deterministic forecast of the 
event into a merged product, which expresses the confidence of the event.  

4) Develop visualization methods: 
a. Depict the merged products for a specified event in terms of the certainty 

of a specified forecast value (e.g., region of highest snowfall 
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superimposed over region of highest certainty to reveal the area of highest 
expected snowfall). 

b. Develop methods to depict merged products to enable warfighters to 
quickly assess the risks involved in conducting the mission using the GIS 
capability for visualization of complex information. A candidate method 
using ArcGIS4 software uses a 3-color technique to visualize the 
information in a continuous fashion, pixel-by-pixel, that can be more 
meaningful and easier to interpret. Through use of combinations of red, 
green, and blue lights the information can be displayed which is easily 
visible to the human eye and makes the information more understandable 
and more easily determined from the forecast. 

c. Tailor the final visualization product to maximize the effectiveness for 
use by warfighters by applying developed sets of criteria including: 
1) Resolution in time and space matches the scale of the operational 

activities. 
2) Lead time matches the decision horizon. 
3) Meteorological variables cover the warfighter scope of interest. 
4) Forecast uncertainty is minimized. 
5) Predicted probabilities of discreet events correspond to verified 

frequencies of occurrence. 

4. Assessing the Value of CI 

The CI is a metric of inherent risk of a meteorological situation not being 
adequately predicted by a forecast model. It uses a combination of intrinsic (non-
model related) meteorological fields and recent model performance and in practice 
consists of a rule set evaluation of synoptic scale features. The NATO Military 
Meteorology panel has extensively reviewed CI and found that it is a valid way to 
assess forecast uncertainty, but also thought at that time that quantifying uncertainty 
on the basis of ensemble model results would in the long run offer more on this 
problem than CI. 

In a more recent review, however, CI showed more promise. It had been further 
developed so that its rule set was evaluated on the basis of one year’s Global 
Forecast System (GFS) data. Some rules were discarded and the CI score was now 
based on a summation of the rules in which the individual rules are each weighted 
by a coefficient. The coefficients were derived by multiple linear regression for a 
set of 2,000 × 2,000-km domains using initially the one year of GFS data. The 
domains cover all global land areas and the coefficients differ by domain. Even 
more recently several years of data have been used. 
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CI is based on the idea that there are identifiable meteorological features that are 
indicative of variable, unstable or otherwise low predictive states that may reduce 
human and numerical forecast skill. Some examples of challenging features are new 
fronts or fronts that change speed (or start to move); formation of low pressure areas 
(cyclones); upper-level disturbances; and organized convection. These 
complicating features impart a decrease in “confidence” in the verbatim 
interpretation of the model-predicted forecast. 

The current version of CI (CI v0.3b) is applicable to 12- and 24-hour (h) 
Meteorological Gridded Message (METGM) forecasts for any 2,000 × 2,000-km 
land domain for the full latitude range of valid METGMs. The CI provides an 
estimate of the uncertainty of the forecast which has been related to the standard 
deviation of the error for meteorological variables at various height levels. CI has 
been formally tested with the Canadian Global Environmental Multiscale model 
and the American GFS models, and informally applied on the Weather Research 
and Forecasting (WRF) model.  

The current CI equation is as follows: 

FIELD_DIFF_VER = b0 + b1 GRAD_MAX + b2 GRAD_MIN+ b3 
MAX_CLOSEDLO + b4 FIELD_DIFF_CON + b5 MAX_RV + b6 
MAX_RV_SIZE + b7 MAX_MAGGEO + b8 MAX_MAGGEO_SIZE + b9 
SIG_MAGGEO_SIZE + b10 MAX_MAGAGEO + b11 
MAX_MAGAGEO_SIZE + b12SIG_MAGAGEO_SIZE + b13CAPE_MAX 
+ b14CIN_MAX + b15DIV_SIZE_MAX + b16DIV_Maximum + 
b17CONV_SIZE_MAX + b18CONV_Maximum 

The 18 predictors in this equation are defined in Appendix B.2 This CI equation is 
a linear equation with 19 undetermined coefficients, each corresponding to a 
specific meteorological feature of importance. The values corresponding to each of 
the 19 coefficients were determined for each domain by performing a multiple 
linear regression for all of either 12-h or 24-h forecasts for almost an entire year of 
data (02 May 2008 to 30 Apr 2009 and initiated at 00 and 12 coordinated universal 
time) giving about 600 valid data points. The regressions are calculated using the 
“R” software package.  

The CI v0.3b was trained for a global set of domains on a 1-year data set of 12- and 
24-h forecasts. Individually and collectively, both 12- and 24-h forecasts for the 
119 domains fell within the same envelope of CI_RAW score versus the 500 
hectopascals (hPa) forecast height. For even the worst-performing Antarctic 
domains, less than 5% of the points fell outside this envelope. Training on 12-h 
forecasts produced similar distribution of forecast-error points as a function of 
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CI_RAW score as the 24-h forecasts within the same envelope, but the points were 
concentrated at lower model-forecast errors and CI_Risk scores. In most individual 
cases the model forecast errors were smaller for 12-h forecasts than for the same 
forecasts carried on to 24 h; however, for a small percent of cases the 12-h forecast 
errors were larger. The largest forecast errors and CI_RAW scores were found at 
the highest latitudes; the smallest forecast errors and CI_RAW scores were found 
near the equator. Generally, the highest correlations and best fit to the CI conceptual 
model occurred in well-developed regions (with lots of observations) in 
midlatitudes.  

To run CI operationally over a domain that does not coincide with one of the 119 
trained domains, CI coefficients obtained from the nearest trained neighbor domain 
are used. To evaluate CI performance in operational mode, CI was run operationally 
over the nearly one year of data set for 14 selected domains. CI was rerun in training 
mode over the same domains and the results compared. For some domains the 
penalty for using the nearest neighbor’s coefficients was small. For others it was 
larger and increased as a function of distance to the neighbor. However, it is 
concluded that CI performs adequately in an operational mode. 

It is important that CI be exercised for different time periods and models to 
determine the robustness of these results. It is highly recommended that additional 
training be undertaken with domains placed at a higher density, especially in 
latitude, than used in this case. 

To develop further, CI should be applied to different forecast models and additional 
years. In addition, these future CI versions should be trained on overlapping 
domains in order to improve the accuracy when the nearest neighbor coefficients 
are used in an operational mode.  

The separate calculations of Convective Available Potential Energy and 
Convective Inhibition should be replaced with a Convection Index; this should 
improve the usefulness of the combined rule. Other rules involving heights at 
pressure levels different than 500 hPa (e.g., 850 hPa and 300 hPa) should be 
considered. This is because atmospheric jets typically are found in the upper 
troposphere and convergence and advection in the lower troposphere is often 
important. Evaluating these only at 500 hPa misses their greatest impact. 

There are potential users of CI beyond the ballistics community; they may be 
primarily interested in different variables or atmospheric levels, so a different rule 
set may be necessary to meet their needs. Ensemble forecasts are becoming more 
widely available; further development should consider the roles of ensembles, CI, 
and ensembles as a part of CI. Note that the variance of the ensembles is not the 
same as the variance of the atmosphere, so a calibration such as that performed for 
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CI v0.3b will have to be done (and ensemble variance properties can be very 
ensemble dependent). 

CI has been proven to be a viable way to assess whether a forecast will be good 
because a high CI score has shown that such a forecast will be good. On the other 
hand, a forecast with a low CI score can turn out good or bad. Therefore, the risk 
of using a high CI forecast is low and the risk of using a low CI forecast is much 
higher. By implementing new rules (as mentioned previously) and extending the 
training to additional models and years of data, the spread of model-forecast 
variation with CI score is expected to be reduced. This will enhance the value of 
CI. In the results so far, there has been general agreement between the CI score and 
the actual model-forecast error—the 500-hPa root-mean-square error (RMSE) 
height error. Future work should also consider other forecast metrics such as the 
300- and 850-hPa RMSE–vector wind errors, the 850-hPa RMSE temperature and 
height errors, and so on. 

5. Conclusions 

This brief report presents 2 methodologies, ensemble modeling and the Confidence 
Index, which potentially could produce a means to estimate the risk associated with 
a mesoscale forecast. A number of forecast centers nationally and internationally 
such as the National Center for Environmental Prediction, the US Air Force 557th 
Weather Wing, and the European Center for Medium-Range Weather Forecasts 
produce global forecasts using ensemble methods. Nevertheless, the computational 
load may be excessive for smaller operational computing systems, especially for 
larger model domains. However, as higher-end computing capabilities become 
available in smaller systems over the next several years, a useful ensemble method 
may become feasible on a field computer. CI methods have shown promise and 
could run on smaller systems quickly enough to be useful once the appropriate 
training has been completed for the selected regions. Further development of the 
CI methodology is needed before being testing and released for operational 
applications. The potential exists for a method that would combine ensemble and 
CI algorithms, though, that would require additional investigation.   

Either methodology or a combination of the 2 potentially could provide important 
added value to meteorological support by providing users with an indication of the 
quality of a mesoscale forecast and consequently applications that depend on those 
forecasts. However, development of a software package for operational use will 
require significant resources and effort. It is not short term, but interim methods 
along the way could indicate the way forward for development of an operational 
package.  
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Appendix A. Aspects of Numerical Weather Prediction 
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Numerical Weather Prediction (NWP) is the science of forecasting weather 
conditions at some time in the future based on present and past observations using 
complex mathematical/physical model(s) and advanced computational techniques. 
These predictions can range from hours to months and in some cases years into the 
future. Spatially, these codes can simulate conditions from small regional 
microclimates to global climates. Of particular interest to the US Army are codes 
that can make short-term predictions that are valid for a few hours over a roughly 
brigade-sized area of responsibility.  

While both long- and short-term forecasts are of interest to a brigade commander 
for planning purposes, it is at the meso- and microscales where forecasts can 
enhance situational awareness for the echelons below brigade. Mesoscale models 
resolve meteorological features such as thunderstorms or microbursts that typically 
are on the order of fewer than 10 kilometers (km) in extent. Microscale models 
resolve features are often less than 1 km in extent, such as turbulent flows in an 
urban canyon. Temporally, these meso- and microscale models provide needed 
detail that is not provided by the coarse synoptic forecasts of large-scale features, 
such as weather fronts that update typically every 6 to 12 hours (h). For US Army 
purposes, the term “Nowcast” refers to forecasts of mesoscale conditions up to 6 h 
into the future and can be updated as frequently as every 30–60 minutes. 

Nowcast models are typically high-resolution applications of research and 
operational mesoscale NWP models such as the Advanced Research Weather 
Research and Forecast model (WRF-ARW) with extensions that might include 
finer terrain resolutions and more detailed representations of the underlying 
atmospheric physics. Functionally, these models take as initial conditions both very 
coarse-grained synoptic forecasts and observational data from various 
meteorological data sources to produce their higher resolution Nowcasts. 

The foundation of NWP models is the conservation of mass, heat, motion, and 
water vapor as well as other gaseous and aerosol materials over the region of 
interest. NWP codes model these properties through a set of coupled partial 
differential equations with the first-guess–initial and time-dependent–later 
boundary tendencies provided by a forecast from a coarse-grained synoptic model. 
Because these models seek to represent climate physics at a high resolution, the 
transition from coarse- to fine-grain is handled via a nesting strategy so that 
boundary conditions enter into the model more smoothly. Typically, this nesting 
occurs through telescopic “multi” nesting approach tapering from an outer domain 
on the order of 1,500 km by 1,500 km to an inner domain that may be a 100 km by 
100 km in extent. In this approach, the outer nest moves the lateral boundaries as 
far away from the desired model center of interest as possible so that tendencies 
from the external coarse-grain model pass gradually into the model domain. The 
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middle nest (or several) acts as an intermediate resolution nest(s) for ideal 
downscaling. Finally, the interior domain captures the domain of interest at the 
highest resolution desired. Such an approach is also called a “limited-area” 
mesoscale NWP configuration.  

While the conservation-balance equations govern the transport of mass, energy, 
etc., throughout the model, other physics (often unresolved processes such as 
turbulence, whose effects must be estimated) are incorporated via 
“parameterizations” that capture effects of cloud cover, turbulence, solar radiation, 
etc. The collection of these conservation balance equations (partial differential 
equations that are linearized and solved numerically) along with the various 
parameterizations constitute the typical NWP model. 

A single parameterization scheme will fall into one of 5 groups: 1) Microphysics, 
2) Cumulus, 3) Radiation, 4) Planetary Boundary Layer, or 5) Surface effects that 
capture (respectively) physics such as moisture, clouds, solar radiation, turbulence, 
and land cover. The subgrid effects are a consequence of the interaction between 
representative schemes from each group during the simulation execution for the 
conservation principles to hold. Within each group there are a number of different 
approaches to handling that particular effect, each approach suitable for a range of 
conditions. 

If one considers only the surface-layer and boundary-layer parameterizations, there 
are 15 combinations of these 2 physical schemes possible. If one takes all of the 
available combinations of physics options in WRF-ARW, there are more than 2 
million possible combinations; thus, on a battlefield or in a remote deployment it is 
not possible to perform forecasts with all of these combinations to find the “single” 
set that best describes the local weather. Furthermore, each scheme or combination 
of schemes quite often only works best in certain environments. Given that we 
cannot know in advance where a brigade will be deployed, we seek a combination 
parameterization that works ideally well in all situations but practically well within 
a defined region.  

If we consider our modeling system a “gray box”, we can model the outputs (for 
example, forecast skill) as a statistical function of the initial conditions along with 
the internal physics that constitutes the “gray box”. Consequently, our task becomes 
to appropriately sample that function in a manner that minimizes both the 
computational burden we face and allows us to maximize the amount of 
information we can extract from our set of model runs. Ideally, one should approach 
the selection of a candidate set of parameterizations via a method that leads to 
robust performance under a variety of weather conditions for a given domain—and 
one such approach is through the use of Design of Experiments techniques. Here 
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we intend a design point to be a single sample of the “gray-box simulation” whose 
value will be an output figure of merit such as forecast skill. Consequently, the 
design as a whole can be used to support identification of a suite of parameterization 
schemes that collectively produce a “skillful” forecast over a variety of conditions. 
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CI v0.3b is thus based on 10 Rules which calculate a total of 18 predictor variables 
(features) which are used in the regression equation to calculate CI. Table 1 
provides a descriptive list of the 18 predictor variables used in CI v0.3b. 

Table List of predictors 

 Predictor Parent Component/System Overview 
1 GRAD_MIN Predictor for the Gradient Rule 

(Rule 1) 
Represents the lowest gradient value 
at 500 mb. 

2 GRAD_MAX Predictor for the Gradient Rule 
(Rule 1) 

Represents the highest gradient value 
at 500 mb. 

3 MAX_CLOSEDLO Predictor for the Closed Low 
Rule (Rule 2) 

Gives a numerical value for the 
evidence of existing closed low 
system in the AOI. 

4 FIELD_DIFF_CON Predictor for the Forecast 
Consistency Rule (Rule 3) 

Numerical value to estimate the 
consistency between successive 
forecasts. 

5 FIELD_DIFF_VER Used for verification analysis 
(Rule 4) 

Provides a numerical value as a 
means to validate the forecast against 
the analysis. 

6 MAX_RV Predictor for the New Closed 
Feature Analysis Rule (Rule 5) 

Maximum relative vorticity at 500 
mb 

7 MAX_RV_SIZE Predictor for the New Closed 
Feature Analysis Rule (Rule 5) 

Measure of the size of largest region 
of significant relative vorticity 

8 MAX_MAGGEO Predictor for the Trough/Jets 
Analysis using Geostrophicnds 
at 500mb (Rule 

Maximum magnitude of geostrophic 
wind at 500 mb 

9 MAX_MAGGEO_SIZE Predictor for the Trough/Jets 
Analysis using Geostrophic 
Winds at 500mb (Rule 6). 

Measure of the size of largest region 
of significant geostrophic wind 

10 SIG_MAGGEO_SIZE Predictor for the Trough/Jets 
Analysis using Geostrophic 
Winds at 500mb (Rule 6). 

Measure of the extent of all regions 
of significant geostrophic wind 

11 MAX_MAGAGEO Predictor for the Trough/Jets 
Analysis using Ageostrophic 
Winds at 500mb (Rule 7). 

Maximum magnitude of 
ageostrophic wind at 500 mb 

12 MAX_MAGAGEO_SIZE Predictor for the Trough/Jets 
Analysis using Ageostrophic 
Winds at 500mb (Rule 7). 

Measure of the size of largest region 
of significant ageostrophic wind 

13 SIG_MAGAGEO_SIZE Predictor for the Trough/Jets 
Analysis using Ageostrophic 
Winds at 500mb (Rule 7). 

Measure of the extent of all regions 
of significant ageostrophic wind 

14 CAPE_MAX Predictor for Convection (Rule 
8) 

Maximum convective available 
potential energy  

15 CIN_MAX Predictor for Convection (Rule 
8) 

Maximum convective inhibition  

16 DIV_MAX Predictor for Divergence (Rule 
9) 

Maximum 500-mb wind divergence 

17 DIV_MAX_SIZE Predictor for Divergence (Rule 
9) 

Measure of the extent of all regions 
of significant 500-mb divergent wind 

18 CONV_MAX Predictor for Convergence 
(Rule 10) 

Maximum 500-mb wind 
convergence  

19 CONV_MAX_SIZE Predictor for Convergence 
(Rule 10) 

Measure of the extent of all regions 
of significant 500-mb convergence 
wind 
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List of Symbols, Abbreviations, and Acronyms 

4D 4-dimensional 

CI confidence index 

GFS Global Forecast System 

GIS Geographic Information System 

h hour 

hPa hectopascal 

MET meteorological 

METGM Meteorological Gridded Message 

NWP Numerical Weather Prediction 

PDF probability distribution function 

RMSE root-mean-square error 

WRF Weather Research and Forecasting 

 

 

 

  



 

18 

 1 DEFENSE TECHNICAL 
 (PDF) INFORMATION CTR 
  DTIC OCA 
 
 5 DIRECTOR 
 (PDF) US ARMY RESEARCH LAB 
  RDRL CIO LL 
  IMAL HRA MAIL & RECORDS 
  MGMT 
  RDRL CIE 
   JAMES L COGAN 
  RDRL CIE M 
   PATRICK A HAINES 
   JEFFREY A SMITH 
 
 1 GOVT PRINTG OFC 
 (PDF)  A MALHOTRA 
 
 3 US ARMY RSRCH DEVEL 
 (PDFs) AND ENGINEERING COMM 
  ARMAMENT RSRCH DEVEL 
  ENGINEERING CENTER 
  WEAPONS AND SOFTWARE 
  ENGINEERING CENTER 
  FIRE CONTROL SYSTEMS 
  AND TECH DIRECTORATE 
  FIRING TABLES AND BALLIST DIV 
  RDAR WSF T 
   A J SOWA 
   J A FONNER 
   R M WELLS 
 
 
 

 


	List of Tables
	1. Introduction
	2. Overview of Assessment Methods
	3. Assessment of Spatial and Temporal Uncertainties in Ensemble Forecasts
	3.1 Technical Approach

	4. Assessing the Value of CI
	5. Conclusions
	6. References and Notes
	Appendix A. Aspects of Numerical Weather Prediction
	Appendix B. List of Confidence Index (CI) Predictors
	List of Symbols, Abbreviations, and Acronyms

